LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electronic, Structural, and Magnetic Upgrading of Coal-Based Products through Laser Annealing.

Photo from wikipedia

Most coal-to-product routes require complex thermal treatment to carbonize the raw materials. However, the lack of unified comparison of products made from different kinds of coals downplays the role of… Click to show full abstract

Most coal-to-product routes require complex thermal treatment to carbonize the raw materials. However, the lack of unified comparison of products made from different kinds of coals downplays the role of initial coal chemistry in high-temperature reactions. Here, we used a CO2 laser to investigate the roles that aromatic content and maturity play in the structural evolution and doping of coals during annealing. Results show that a bituminous coal (DECS 19) with aromatic content and maturity in between higher rank, more mature anthracite (DECS 21) and lower rank, lower maturity lignite (DECS 25) leads to more graphite-like structure observed from the highest 2D peak on the Raman spectrum and conductivity (sheet resistance ∼30 ohm sq-1) after lasing. When nitrogen dopants are incorporated with saturated urea dopants into coals through laser ablation, nitrogen preferentially incorporates at the edge sites of graphitic grains. Furthermore, oxide nanoparticles can be incorporated into the graphitic backbone of coal to modify their electronic and magnetic properties through laser annealing. Leveraging tunable magnetic behavior, we demonstrate a soft actuator using both conductive and magnetic coal-Fe/Co oxide. Through laser annealing, we propose a paradigm to understand and control coal chemistry toward flexible and tunable doping and magnetism.

Keywords: laser annealing; electronic structural; chemistry; coal; structural magnetic; magnetic upgrading

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.