LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Engineering Catalytic Interfaces in Cuδ+/CeO2-TiO2 Photocatalysts for Synergistically Boosting CO2 Reduction to Ethylene.

Photo from wikipedia

Photocatalytic CO2 conversion into a high-value-added C2 product is a highly challenging task because of insufficient electron deliverability and sluggish C-C coupling kinetics. Engineering catalytic interfaces in photocatalysts provides a… Click to show full abstract

Photocatalytic CO2 conversion into a high-value-added C2 product is a highly challenging task because of insufficient electron deliverability and sluggish C-C coupling kinetics. Engineering catalytic interfaces in photocatalysts provides a promising approach to manipulate photoinduced charge carriers and create multiple catalytic sites for boosting the generation of C2 product from CO2 reduction. Herein, a Cuδ+/CeO2-TiO2 photocatalyst that contains atomically dispersed Cuδ+ sites anchored on the CeO2-TiO2 heterostructures consisting of highly dispersed CeO2 nanoparticles on porous TiO2 is designedly constructed by the pyrolytic transformation of a Cu2+-Ce3+/MIL-125-NH2 precursor. In the designed photocatalyst, TiO2 acts as a light-harvesting material for generating electron-hole pairs that are efficiently separated by CeO2-TiO2 interfaces, and the Cu-Ce dual active sites synergistically facilitate the generation and dimerization of *CO intermediates, thus lowering the energy barrier of C-C coupling. As a consequence, the Cuδ+/CeO2-TiO2 photocatalyst exhibits a production rate of 4.51 μmol-1·gcat-1·h-1 and 73.9% selectivity in terms of electron utilization for CO2 to C2H4 conversion under simulated sunlight, with H2O as hydrogen source and hole scavenger. The photocatalytic mechanism is revealed by operando spectroscopic methods as well as theoretical calculations. This study displays the rational construction of heterogeneous photocatalysts for boosting CO2 conversion and emphasizes the synergistic effect of multiple active sites in enhancing the selectivity of C2 product.

Keywords: catalytic interfaces; co2 reduction; ceo2 tio2; engineering catalytic; co2

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.