Metal halide perovskite nanocrystals (PeNCs) with a controlled quantum size effect have received intense interest for potential applications in optoelectronics and photonics. Here, we present a simple and innovative strategy… Click to show full abstract
Metal halide perovskite nanocrystals (PeNCs) with a controlled quantum size effect have received intense interest for potential applications in optoelectronics and photonics. Here, we present a simple and innovative strategy to precisely tune the photoluminescence color of PeNCs by simply printing perovskite precursor solutions on cellulose papers. Depending on the volume of the printed precursor solutions, the PeNCs are autonomously grown into three discrete sizes, and their relative size population is controlled; accordingly, not only the number of multiple PL peaks but also their relative intensities can be precisely tuned. This autonomous size control is obtained through the efflorescence, which is advection of salt ions toward the surface of a porous medium during solvent evaporation and also through the confined crystal growth in the hierarchical structure of cellulose fibers. The infiltrated PeNCs are environmentally stable against moisture (for 3 months in air at 70% relative humidity) and strong light exposure by hydrophobic surface treatment. This study also demonstrates invisible encryption and highly secured unclonable anticounterfeiting patterns on deformable cellulose substrates and banknotes.
               
Click one of the above tabs to view related content.