LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cell-Specific Metabolic Reprogramming of Tumors for Bioactivatable Ferroptosis Therapy.

Photo by finnnyc from unsplash

Ferroptosis is a nonapoptotic iron-dependent cell death pathway with a significant clinical potential, but its translation is impeded by lack of tumor-specific ferroptosis regulators and aberrant tumor iron metabolism. Herein,… Click to show full abstract

Ferroptosis is a nonapoptotic iron-dependent cell death pathway with a significant clinical potential, but its translation is impeded by lack of tumor-specific ferroptosis regulators and aberrant tumor iron metabolism. Herein, we report a combinational strategy based on clinically tested constituents to selectively induce ferroptosis in metabolically reprogrammed tumor cells through cooperative GPX4-inhibition and ferritinophagy-enabled Fe2+ reinforcement. Azido groups were first introduced on tumor cells using biocompatible long-circulating self-assemblies based on polyethylene glycol-disulfide-N-azidoacetyl-d-mannosamine via metabolic glycoengineering. The azido-expressing tumor cells could specifically react with dibenzocyclooctyne-modified disulfide-bridged nanoassemblies via bioorthogonal click reactions, where the nanoassemblies were loaded with ferroptosis inducer RSL3 and ferritinophagy initiator dihydroartemisinin (DHA) and could release them in a bioresponsive manner. DHA-initiated ferritinophagy could degrade intracellular ferritin to liberate stored iron species and cooperate with the RSL3-mediated GPX4-inhibition for enhanced ferroptosis therapy. This tumor-specific ferroptosis induction strategy provides a generally applicable therapy with enhanced translatability, especially for tumors lacking targetable endogenous receptors.

Keywords: tumor; ferroptosis therapy; ferroptosis; tumor cells; cell specific

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.