LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Two-Dimensional Cs2AgBiBr6/WS2 Heterostructure-Based Photodetector with Boosted Detectivity via Interfacial Engineering.

Photo by kattrinnaaaaa from unsplash

Two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers have been widely used for optoelectronic devices because of their ultrasensitivity to light detection acquired from their direct gap properties. However, the small… Click to show full abstract

Two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers have been widely used for optoelectronic devices because of their ultrasensitivity to light detection acquired from their direct gap properties. However, the small cross-section of photon absorption in the atomically thin layer thickness significantly limits the generation of photocarriers, restricting their performance. Here, we integrate monolayer WS2 with 2D perovskites Cs2AgBiBr6, which serve as the light absorption layer, to greatly enhance the photosensitivity of WS2. The efficient charge transfer at the Cs2AgBiBr6/WS2 heterojunction is evidenced by the shortened photoluminescence (PL) decay time of Cs2AgBiBr6. Scanning photocurrent microscopy of Cs2AgBiBr6/WS2/graphene reveals that improved charge extraction from graphene leads to an enhanced photoresponse. The 2D Cs2AgBiBr6/WS2/graphene vertical heterostructure photodetector exhibits a high detectivity (D*) of 1.5 × 1013 Jones with a fast response time of 52.3 μs/53.6 μs and an on/off ratio of 1.02 × 104. It is worth noting that this 2D heterostructure photodetector can realize self-powered light detection behavior with an open-circuit voltage of ∼0.75 V. The results suggest that the 2D perovskites can effectively improve the TMDC layer-based photodetectors for low-power consumption photoelectrical applications.

Keywords: two dimensional; photodetector; cs2agbibr6 ws2; heterostructure; cs2agbibr6

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.