LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Negative Poisson's Ratio in Thermally Conductive Covalent Organic Frameworks.

Photo from wikipedia

The prospect of combining two-dimensional materials in vertical stacks has created a new paradigm for materials scientists and engineers. Herein, we show that stacks of two-dimensional covalent organic frameworks are… Click to show full abstract

The prospect of combining two-dimensional materials in vertical stacks has created a new paradigm for materials scientists and engineers. Herein, we show that stacks of two-dimensional covalent organic frameworks are endowed with a host of unique physical properties that combine low densities, high thermal conductivities, and highly negative Poisson's ratios. Our systematic atomistic simulations demonstrate that the tunable mechanical and thermal properties arise from their singular layered architecture comprising strongly bonded light atoms and periodic laminar pores. For example, the negative Poisson's ratio arises from the weak van der Waals interactions between the two-dimensional layers along with the strong covalent bonds that act as hinges along the layers, which facilitate the twisting and swiveling motion of the phenyl rings relative to the tensile plane. The mechanical and thermal properties of two-dimensional covalent organic frameworks can be tailored through structural modularities such as control over the pore size and/or interlayer separation. We reveal that these materials mark a regime of materials design that combines low densities with high thermal conductivities arising from their nanoporous yet covalently interconnected structure.

Keywords: covalent; negative poisson; covalent organic; two dimensional; organic frameworks

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.