LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrathin Nanosheet Assembled Multishelled Superstructures for Photocatalytic CO2 Reduction.

Photo by kdwk from unsplash

Solar-driven conversion of CO2 is considered an efficient way to tackle the energy and environmental crisis. However, the photocatalytic performance is severely restricted due to the insufficient accessible active sites… Click to show full abstract

Solar-driven conversion of CO2 is considered an efficient way to tackle the energy and environmental crisis. However, the photocatalytic performance is severely restricted due to the insufficient accessible active sites and inhibited electron transfer efficiency. This work demonstrates a general in situ topological transformation strategy for the integration of uniform Co-based species to fabricate a series of multishelled superstructures (MSSs) for CO2 photocatalytic conversion. Thorough characterizations reveal the obtained MSSs feature ultrathin Co-based nanosheet assembled polyhedral structures with tunable shell numbers, inner cavity sizes, and compositions. The superstructures increase the spatial density of Co-based active sites while maintaining their high accessibility. Further, the ultrathin nanosheets also facilitate the transfer of photogenerated electrons. As a result, the ZnCo bimetallic hydroxide featuring an ultrathin nanosheet assembled quadruple-shell hollow structure (ZnCo-OH QUNH) exhibits high photocatalytic efficiency toward CO2 reduction with a CO evolution rate of 134.2 μmol h-1 and an apparent quantum yield of 6.76% at 450 nm. The quasi in situ spectra and theoretical calculations disclose that Co sites in ZnCo-OH QUNH act as highly active centers to stabilize the COOH* intermediate, while Zn species play the role of adsorption sites for the [Ru(bpy)3]2+ molecules.

Keywords: multishelled superstructures; nanosheet assembled; ultrathin nanosheet; nanosheet; co2 reduction

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.