LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vapor-Phase Living Assembly of π-Conjugated Organic Semiconductors.

Photo from wikipedia

In contrast to well-studied amphiphilic block copolymers (BCPs) and π-stacked dyes, living assembly of hydrophobic π-conjugated materials has not yet been explored to date. Using a microspacing physical vapor transport… Click to show full abstract

In contrast to well-studied amphiphilic block copolymers (BCPs) and π-stacked dyes, living assembly of hydrophobic π-conjugated materials has not yet been explored to date. Using a microspacing physical vapor transport (PVT) technique, the prefabricated microrods of organic semiconductors involving 9,10-dicyanoanthracene (DCA, A) or its binary alloy (B) can act as seeds to initiate living homoepitaxial growth from their ends, giving elongated microrods with controlled length. Red-green-red tricolor fluorescent microrod heterostructures with low dispersity are further realized by living heteroepitaxial growth of B microrod blocks on A seed microrod tips. Upon varying the growth sequence of each block, reverse triblock microrods are also accessible. Such a seed-induced living growth is applicable to triblock microrod heterostructures of more binary combinations as well as even more complex penta- and hepta-block heterostructures comprising A and B. By virtue of a convenient vapor-phase growth method, the present work demonstrates the generality of living assembly of π-conjugated materials.

Keywords: growth; assembly conjugated; organic semiconductors; vapor phase; seed; living assembly

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.