Human skin is the largest organ, and it can transform multiple external stimuli into the biopotential signals by virtue of ions as information carriers. Ionic skins (i-skins) that can mimic… Click to show full abstract
Human skin is the largest organ, and it can transform multiple external stimuli into the biopotential signals by virtue of ions as information carriers. Ionic skins (i-skins) that can mimic human skin have been extensively explored; however, the limited sensing capacities as well as the need of an extra power supply significantly restrict their broad applications. Herein, we develop self-powered humanlike i-skins based on gradient polyelectrolyte membranes (GPMs) that can directly and accurately perceive multiple stimuli. Prepared by a hydrogel-assisted reaction-diffusion method, the GPMs exhibit gradient-distributed charged groups across polymer networks, enabling one to generate a thickness-dependent and thermoresponsive self-induced potential in a hydrated situation and in a humidity-sensitive self-induced potential in a dehydrated/dried situation, respectively. Consequently, the GPM-based i-skins can precisely detect pressure, temperature, and humidity in a self-powered manner. The coupling of mechano-electric and thermo-electric effects inherent in GPMs provides a general strategy for developing innovative self-powered ion-based perception systems.
               
Click one of the above tabs to view related content.