LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conductive Nerve Guidance Conduits Based on Morpho Butterfly Wings for Peripheral Nerve Repair.

Photo by aaronburden from unsplash

Peripheral nerve injury (PNI), causing loss of sensory and motor function, is a complex and challenging disease in the clinic due to the restricted regeneration capacity. Nerve guidance conduits (NGCs)… Click to show full abstract

Peripheral nerve injury (PNI), causing loss of sensory and motor function, is a complex and challenging disease in the clinic due to the restricted regeneration capacity. Nerve guidance conduits (NGCs) have become a promising substitute for peripheral nerve regeneration, but their efficacy is often limited. Here, inspired by the physiological structures of peripheral nerves, we present a conductive topological scaffold for nerve repair by modifying Morpho butterfly wing with reduced graphene oxide (rGO) nanosheets and methacrylated gelatin (GelMA) hydrogel encapsulated brain-derived neurotrophic factor (BDNF). Benefiting from the biocompatibility of GelMA hydrogel, the conductivity of rGO and parallel nanoridge structures of wing scales, PC12 cells, and neural stem cells grown on the modified wing have an increased neurite length with guided cellular orientation. In addition, the NGCs are successfully obtained by manually rolling up the scaffolds and exhibited great performance in repairing 10 mm sciatic nerve defects in rats, and we believe that the NGCs can be applied in reparing longer nerve defects in the future by further optimization. We also demonstrate the feasibility of electrically conductive NGCs based on the rGO/BDNF/GelMA-integrated Morpho butterfly wing as functional nerve regeneration conduits, which may have potential value for application in repairing peripheral nerve injuries.

Keywords: morpho butterfly; guidance conduits; peripheral nerve; nerve repair; nerve; nerve guidance

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.