LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accelerated Ionic and Charge Transfer through Atomic Interfacial Electric Fields for Superior Sodium Storage.

Photo from wikipedia

Atomic interfacial electric fields hold great potential for boosting ionic and charge transfer and accelerating electrochemical reaction kinetics. Here, built-in electric fields within the heterostructure are created by electrostatic assembly… Click to show full abstract

Atomic interfacial electric fields hold great potential for boosting ionic and charge transfer and accelerating electrochemical reaction kinetics. Here, built-in electric fields within the heterostructure are created by electrostatic assembly of unilamellar titano-niobate/graphene (reduced graphene oxide) nanosheets as building blocks. Scanning Kelvin probe microscopy confirms the existence of built-in electric fields by detecting the unbalanced surface potential of disparate nanosheets in the heterostructure, which facilitates ion and electron transfer, thus enabling an excellent reversible sodium storage capacity of 245 mAh g-1 at 0.05 A g-1. Theoretical analysis also confirms that the electric field can enhance the electric conductivity and facilitate electron transfer at the atomic interface. Moreover, in situ TEM observations confirm the homogeneous intercalation of sodium ions and very small volume expansion of the hybrid materials. As a result, a highly stable lifetime of 3000 cycles is achieved with capacity retention of 98.8%. This work attests the importance of accelerating ionic and charge transfer through atomic interfacial electric field for superior sodium storage.

Keywords: transfer; ionic charge; sodium; electric fields; interfacial electric; atomic interfacial

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.