Nowadays, despite the fact that recent progress has been reported to mimic natural structural materials (especially nacre), designing bioinspired ultrastrong composites in a universal, viable, and scalable manner still remains… Click to show full abstract
Nowadays, despite the fact that recent progress has been reported to mimic natural structural materials (especially nacre), designing bioinspired ultrastrong composites in a universal, viable, and scalable manner still remains a long-standing challenge. In particular, pistachio shells show high tissue strength attributed to the cellulose sheet laminated microstructures. Compared with nacre, pistachio shells own interlocking mortise-tenon joints in their structure, which offer higher energy dissipation and deformability. Here we present a strategy to produce nanocomposites with pistachio-mimetic structures through repeated kneading of graphene oxide (GO) in a dynamic covalent and supramolecular poly(sodium thioctic) (pST) system. The dynamic nature of the polymeric backbones endows the resultant GO-based composite with full recyclability and three-dimensional shapeability. The superior mechanical properties of the pistachio-mimetic composite can be attributed to the mortise-tenon joints design in the structure, which has not been achieved in the nacre-mimetic composite. The resulting composite also exhibits high thermal conductivity (15.6 W/(m·K)), yielding an alternative approach to design in engineered and thermal management materials.
               
Click one of the above tabs to view related content.