LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heterogeneous and Monolithic 3D Integration of III-V-Based Radio Frequency Devices on Si CMOS Circuits.

Photo from wikipedia

Next-generation wireless communication such as sixth-generation (6G) and beyond is expected to require high-frequency, multifunctionality, and power-efficiency systems. A III-V compound semiconductor is a promising technology for high-frequency applications, and… Click to show full abstract

Next-generation wireless communication such as sixth-generation (6G) and beyond is expected to require high-frequency, multifunctionality, and power-efficiency systems. A III-V compound semiconductor is a promising technology for high-frequency applications, and a Si complementary metal-oxide-semiconductor (CMOS) is the never-beaten technology for highly integrated digital circuits. To harness the advantages of these two technologies, monolithic integration of III-V and Si electronics is beneficial, so that there have been everlasting efforts to accomplish the monolithic integration. Considering that the on horizon 6G wireless communication requires faster and more energy-efficient system-on-chip technologies, it is imperative to realize a radio frequency (RF) system in which III-V technology and Si CMOS technology are integrated at a device level. Here we report heterogeneous and monolithic three-dimensional (3D) analog/RF-digital mixed-signal integrated circuits that contain two types of InGaAs high-electron-mobility transistors (HEMTs) designed for high fT and fMAX in the top and Si CMOS mixed-signal circuits consisting of an analog-to-digital converter and digital-to-analog converter in the bottom. A high unity current gain cutoff frequency of 448 GHz and unity power gain cutoff frequency of 742 GHz have been achieved by the fT oriented and fMAX oriented InGaAs HEMTs, respectively, without being affected by mixed-signal interference. At the same time, the bottom Si CMOS circuits provide valid signals without any performance degradation by the integration process.

Keywords: heterogeneous monolithic; monolithic integration; frequency; integration; integration iii; radio frequency

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.