LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Quality Ferromagnet Fe3GeTe2 for High-Efficiency Electromagnetic Wave Absorption and Shielding with Wideband Radar Cross Section Reduction.

Photo from wikipedia

A high-quality Fe3GeTe2 single crystal with good electrical, magnetic, and electromagnetic wave absorption and shielding properties was prepared in a large quantity (10 g level) by solid-phase sintering and recrystallization… Click to show full abstract

A high-quality Fe3GeTe2 single crystal with good electrical, magnetic, and electromagnetic wave absorption and shielding properties was prepared in a large quantity (10 g level) by solid-phase sintering and recrystallization method, which would promote its in-depth research and practical application. It has good room-temperature electrical properties with a mobility of 42 cm2/V·s, a sheet (bulk) carrier concentration of +1.64 × 1018 /cm2 (+3.28 × 1020 /cm3), and a conductivity of 2196.35 S/cm. Also, a Curie temperature of 238 K indicates the high magnetic transition temperature and a paramagnetic Curie temperature of 301 K shows the large ferromagnetic-paramagnetic transition zone induced by the residual short-range ferromagnetic domains. Particularly, Fe3GeTe2 is in a loosely packed state when used as a loss agent; the electromagnetic wave absorption with a reflection loss of -34.7 dB at 3.66 GHz under thin thickness was shown. Meanwhile, the absorption band can be effectively regulated by varying the thickness. Moreover, Fe3GeTe2 in a close-packed state exhibits terahertz shielding values of 75.1 and 103.2 dB at very thin thicknesses of 70 and 380 μm, and the average shielding value is higher than 47 dB, covering the entire bandwidth from 0.1 to 3.0 THz. Furthermore, by using Fe3GeTe2 as a patch, the wideband radar cross-section can be effectively reduced by up to 33 dBsm. Resultantly, Fe3GeTe2 will be a promising candidate in the electromagnetic protection field.

Keywords: wave absorption; electromagnetic wave; high quality; absorption; absorption shielding

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.