LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strategic Modulation of Target-Specific Isolated Fe,Co Single-Atom Active Sites for Oxygen Electrocatalysis Impacting High Power Zn-Air Battery.

Photo by mattpalmer from unsplash

An effective modulation of the active sites in a bifunctional electrocatalyst is essentially desired, and it is a challenge to outperform the state-of-the-art catalysts toward oxygen electrocatalysis. Herein, we report… Click to show full abstract

An effective modulation of the active sites in a bifunctional electrocatalyst is essentially desired, and it is a challenge to outperform the state-of-the-art catalysts toward oxygen electrocatalysis. Herein, we report the development of a bifunctional electrocatalyst having target-specific Fe-N4/C and Co-N4/C isolated active sites, exhibiting a symbiotic effect on overall oxygen electrocatalysis performances. The dualism of N-dopants and binary metals lower the d-band centers of both Fe and Co in the Fe,Co,N-C catalyst, improving the overpotential of the overall electrocatalytic processes (ΔEORR-OER = 0.74 ± 0.02 V vs RHE). Finally, the Fe,Co,N-C showed a high areal power density of 198.4 mW cm-2 and 158 mW cm-2 in the respective liquid and solid-state Zn-air batteries (ZABs), demonstrating suitable candidature of the active material as air cathode material in ZABs.

Keywords: active sites; specific isolated; air; target specific; oxygen electrocatalysis

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.