LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Organic Dispersion of Mo3Se3- Single-Chain Atomic Crystals Using Surface Modification Methods.

Photo from wikipedia

In this study, single-chain atomic crystals (SCACs), Mo3Se3-, which can be uniformly dispersed, with an atomically thin diameter of ∼0.6 nm were modified to disperse in an organic solvent. Various… Click to show full abstract

In this study, single-chain atomic crystals (SCACs), Mo3Se3-, which can be uniformly dispersed, with an atomically thin diameter of ∼0.6 nm were modified to disperse in an organic solvent. Various surfactants were chosen to provide steric hindrance to aqueous-dispersed Mo3Se3- by modifying the surface of Mo3Se3-. The organic dispersions of surface-modified Mo3Se3- SCACs in nonpolar solvent (toluene, benzene, and chloroform) were stable with a uniform diameter of 2 nm, and they have enhanced stability from oxidation (>10 days). With the surfactants that have a polystyrene tail group (PS-NH2), the surface-modified Mo3Se3- SCAC showed high compatibility with a polystyrene polymer matrix. Using the surface-modified Mo3Se3- SCAC, a homogeneous Mo3Se3-/polystyrene/toluene organogel was prepared. More importantly, the Mo3Se3-/polystyrene organogel exhibits significantly enhanced mechanical properties, with the improvement of 202.27% and 279.52% for tensile strength and elongation, respectively, compared with that of the pure organogel. The surface-modified Mo3Se3- had a similar structure with a polymer matrix, and the properties of the polymer can be improved even with a small addition of Mo3Se3-.

Keywords: atomic crystals; chain atomic; surface; surface modified; mo3se3; single chain

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.