LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anisotropic Infrared Response and Orientation-Dependent Strain-Tuning of the Electronic Structure in Nb2SiTe4.

Photo from wikipedia

Two-dimensional materials with tunable in-plane anisotropic infrared response promise versatile applications in polarized photodetectors and field-effect transistors. Black phosphorus is a prominent example. However, it suffers from poor ambient stability.… Click to show full abstract

Two-dimensional materials with tunable in-plane anisotropic infrared response promise versatile applications in polarized photodetectors and field-effect transistors. Black phosphorus is a prominent example. However, it suffers from poor ambient stability. Here, we report the strain-tunable anisotropic infrared response of a layered material Nb2SiTe4, whose lattice structure is similar to the 2H-phase transition metal dichalcogenides (TMDCs) with three different kinds of building units. Strikingly, some of the strain-tunable optical transitions are crystallographic axis-dependent, even showing an opposite shift when uniaxial strain is applied along two in-plane principal axes. Moreover, G0W0-BSE calculations show good agreement with the anisotropic extinction spectra. The optical selection rules are obtained via group theory analysis, and the strain induced unusual shift trends are well explained by the orbital coupling analysis. Our comprehensive study suggests that Nb2SiTe4 is a good candidate for tunable polarization-sensitive optoelectronic devices.

Keywords: infrared response; anisotropic infrared; strain; structure

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.