LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amine-Wetting-Enabled Dendrite-Free Potassium Metal Anode.

Photo from wikipedia

Considered as an imperative alternative to the commercial LiFePO4 battery, the potassium metal battery possesses great potential in grid-scale energy storage systems due to the low cost, low standard redox… Click to show full abstract

Considered as an imperative alternative to the commercial LiFePO4 battery, the potassium metal battery possesses great potential in grid-scale energy storage systems due to the low cost, low standard redox potential, and high abundance of potassium. The potassium dendrite growth, large volume change, and unstable solid electrolyte interphase (SEI) on the potassium metal anode have, however, hindered its applications. Although conductive scaffolds coupling with potassium metal have been widely proposed to address the above issues, it remains challenging to fabricate a uniform composite with uncompromised capacity. Herein, we propose a facile and efficient strategy to construct dendrite-free and practical carbon-based potassium composite anodes via amine functionalization of the carbon scaffolds that enables fast molten potassium infusion within several seconds. On the basis of experiments and theoretical calculations, we show that highly potassiophilic amine groups immediately transform carbon scaffolds from nonwetting to wetting to postassium. Our carbon-cloth-based potassium composite anode (K@CC) can accommodate volume fluctuation, provide abundant nucleation sites, and lower the local current density, achieving nondendritic morphology with a stable SEI. The fabricated K0.7Mn0.7Ni0.3O2|K@CC full cell displays excellent rate capability and an ultralong lifespan over 8000 cycles (68.5% retention) at a high current of 1 A g-1.

Keywords: dendrite free; metal anode; potassium; potassium metal

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.