Solvent is regarded as a factor in tuning the supramolecular chirality of self-assemblies. Deep eutectic solvents (DESs) show diverse properties in contrast to other common solvents, which are emerging in… Click to show full abstract
Solvent is regarded as a factor in tuning the supramolecular chirality of self-assemblies. Deep eutectic solvents (DESs) show diverse properties in contrast to other common solvents, which are emerging in fabricating functional aggregates and nanoarchitectures. Nevertheless, the emergence and manipulation of supramolecular chirality in DES still remain mysterious. Exploring supramolecular chirality in DES would produce tunable chiroptical materials considering their feasible preparation process and abundant hydrogen bonding sites. In this work, we explored the occurrence and manipulation of supramolecular chirality in DES. Transfer from inherent chiral DES to solutes in either aggregated or monomeric building units is blocked. However, the chiral assembly of π-conjugated amino acids was realized. Compared to aqueous media, self-assembly in DES hinders the spontaneous structural and chirality evolution that benefit from efficient solvation, where the π-conjugated amino acids were involved as hydrogen bonding donors. DES performs as a dye-friendly matrix to afford chiroptical eutectogels with tunable circularly polarized luminescence, whereby a large dissymmetry g-factor of up to 0.015 was realized. DES behaves as feasible and flexible solvents to fabricate and stabilize functional soft chiral self-assemblies with controllable chiroptical properties.
               
Click one of the above tabs to view related content.