LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Directional Exciton-Energy Transport in a Lateral Heteromonolayer of WSe2-MoSe2.

Photo from wikipedia

Controlling the direction of exciton-energy flow in two-dimensional (2D) semiconductors is crucial for developing future high-speed optoelectronic devices using excitons as the information carriers. However, intrinsic exciton diffusion in conventional… Click to show full abstract

Controlling the direction of exciton-energy flow in two-dimensional (2D) semiconductors is crucial for developing future high-speed optoelectronic devices using excitons as the information carriers. However, intrinsic exciton diffusion in conventional 2D semiconductors is omnidirectional, and efficient exciton-energy transport in a specific direction is difficult to achieve. Here we demonstrate directional exciton-energy transport across the interface in tungsten diselenide (WSe2)-molybdenum diselenide (MoSe2) lateral heterostructures. Unidirectional transport is spontaneously driven by the built-in asymmetry of the exciton-energy landscape with respect to the heterojunction interface. At excitation positions close to the interface, the exciton photoluminescence (PL) intensity was substantially decreased in the WSe2 region and enhanced in the MoSe2 region. In PL excitation spectroscopy, it was confirmed that the observed phenomenon arises from lateral exciton-energy transport from WSe2 to MoSe2. This directional exciton-energy flow in lateral 2D heterostructures can be exploited in future optoelectronic devices.

Keywords: exciton; exciton energy; directional exciton; energy transport

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.