LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chirality-Dependent Copper-Diphenylalanine Assemblies with Tough Layered Structure and Enhanced Catalytic Performance.

Photo from wikipedia

Chiral regulation to prepare functional materials has aroused considerable interest in recent years. However, little is known on the effect of chirality of ligands in the metal-organic coordination assembly process.… Click to show full abstract

Chiral regulation to prepare functional materials has aroused considerable interest in recent years. However, little is known on the effect of chirality of ligands in the metal-organic coordination assembly process. We report the self-assembly of diphenylalanine peptide (Phe-Phe, FF), the core fragment of Aβ protein, with metal copper ion (Cu2+) into metal-organic assemblies with chirality-encoded structures and properties. The chirality-dependent metal-dipeptide assembles with different morphologies and supramolecular chirality were obtained by facile changing of the FF chirality. Single-crystal results indicate that (L)-FF coordinated with Cu2+ into a cross-chain structure with a five-coordinated style, while the racemates of (L+D)-FF with Cu2+ crystallized into an (L)-Cu2+-(D)-Cu2+ alternated four-coordinating structure, enabling a higher mechanical and catalytic performance. The Young's modulus of (L+D)-FF-Cu is as high as 34.36 GPa, which is 2.45 times higher than that of (L)-FF-Cu. Furthermore, both of them follow the characteristic enzyme kinetics and show higher catalytic activity than natural laccase at the same mass concentration. Specifically, the calculated catalytic efficiency (kcat/KM) of (L+D)-FF-Cu is 1.14 times higher than that of (L)-FF-Cu, and the (L+D)-FF-Cu shows significantly enhanced stability and reusability compared with (L)-FF-Cu. The results reveal that highly functional materials could be constructed by encoding the chirality of molecular building blocks.

Keywords: copper; structure; chirality dependent; catalytic performance; chirality

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.