LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning Electronic Structures of Transition Metal Carbides to Boost Oxygen Evolution Reactions in Acidic Medium.

Photo by soheil_rb from unsplash

Developing low-cost, efficient, and robust nonprecious metal electrocatalysts for oxygen evolution reactions (OER) in acidic medium is the major challenge to realize the application of the proton exchange membrane water… Click to show full abstract

Developing low-cost, efficient, and robust nonprecious metal electrocatalysts for oxygen evolution reactions (OER) in acidic medium is the major challenge to realize the application of the proton exchange membrane water electrolyzer (PEM-WE). It is well-known that transition metal carbides (TMCs) have Pt-like electronic structures and catalytic behaviors. However, monometallic carbides in acidic medium show ignored OER activities. Herein, we reported that the catalytic activity of the TMCs can be enhanced by constructing bimetallic carbides (TiTaC2) fabricated through hydrothermal treatment followed by an annealing process, and further by doping fluorine (F) into the bimetallic carbides (TiTaFxC2). The as-prepared reduced graphene oxide (rGO) supported TiTaFxC2 nanoparticles (TiTaFxC2 NP/rGO) show state-of-the-art OER catalytic activity, which is even superior to Ir/C catalyst (an onset potential of only 1.42 V vs RHE and the overpotential of 490 mV to reach 100 mA cm-2), fast kinetics (Tafel slope of only 36 mV dec-1), and high durability (maintaining the current density at 1.60 V vs RHE for 40 h). Detailed structural characterizations together with density functional theory (DFT) calculations reveal that the electronic structures of the bimetallic carbides have been tuned, and their possible mechanism is also discussed.

Keywords: electronic structures; oxygen evolution; evolution reactions; acidic medium; metal

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.