LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of Group VIII Magnetic Transition-Metal-Doped Monolayer MoSe2.

Photo by viazavier from unsplash

The limitation on the spintronic applications of van der Waals layered transition-metal dichalcogenide semiconductors is ascribed to the intrinsic nonmagnetic feature. Recent studies have proved that substitutional doping is an… Click to show full abstract

The limitation on the spintronic applications of van der Waals layered transition-metal dichalcogenide semiconductors is ascribed to the intrinsic nonmagnetic feature. Recent studies have proved that substitutional doping is an effective route to alter the magnetic properties of two-dimensional transition-metal dichalcogenides (TMDs). However, highly valid and repeatable substitutional doping of TMDs remains to be developed. Herein, we report group VIII magnetic transition metal-doped molybdenum diselenide (MoSe2) single crystals via a one-pot mixed-salt-intermediated chemical vapor deposition method with high controllability and reproducibility. The high-angle annular dark-field scanning transmission electron microscopy studies further confirm that the sites of Fe are indeed substitutionally incorporated into the MoSe2 monolayer. The Fe-doped MoSe2 monolayer with a concentration from 0.93% to 6.10% could be obtained by controlling the ratios of FeCl3/Na2MoO4. Moreover, this strategy can be extended to create Co(Ni)-doped MoSe2 monolayers. The magnetic hysteresis (M-H) measurements demonstrate that group VIII magnetic transition-metal-doped MoSe2 samples exhibit room-temperature ferromagnetism. Additionally, the Fe-doped MoSe2 field effect transistor shows n-type semiconductor characteristics, indicating the obtainment of a room-temperature dilute magnetic semiconductor. Our approach is universal in magnetic transition-metal substitutional doping of TMDs, and it inspires further research interest in the study of related spintronic and magnetoelectric applications.

Keywords: magnetic transition; transition metal; mose2; group viii; transition

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.