LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Intrapericardial Injectable Hydrogel Patch for Mechanical-Electrical Coupling with Infarcted Myocardium.

Photo by aaronburden from unsplash

Although hydrogel-based patches have shown promising therapeutic efficacy in myocardial infarction (MI), synergistic mechanical, electrical, and biological cues are required to restore cardiac electrical conduction and diastolic-systolic function. Here, an… Click to show full abstract

Although hydrogel-based patches have shown promising therapeutic efficacy in myocardial infarction (MI), synergistic mechanical, electrical, and biological cues are required to restore cardiac electrical conduction and diastolic-systolic function. Here, an injectable mechanical-electrical coupling hydrogel patch (MEHP) is developed via dynamic covalent/noncovalent cross-linking, appropriate for cell encapsulation and minimally invasive implantation into the pericardial cavity. Pericardial fixation and hydrogel self-adhesiveness properties enable the MEHP to highly compliant interfacial coupling with cyclically deformed myocardium. The self-adaptive MEHP inhibits ventricular dilation while assisting cardiac pulsatile function. The MEHP with the electrical conductivity and sensitivity to match myocardial tissue improves electrical connectivity between healthy and infarcted areas and increases electrical conduction velocity and synchronization. Overall, the MEHP combined with cell therapy effectively prevents ventricular fibrosis and remodeling, promotes neovascularization, and restores electrical propagation and synchronized pulsation, facilitating the clinical translation of cardiac tissue engineering.

Keywords: hydrogel; hydrogel patch; mechanical electrical; electrical coupling

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.