LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase Engineering of a Ruthenium Nanostructure toward High-Performance Bifunctional Hydrogen Catalysis.

Photo from wikipedia

The physicochemical properties and catalytic performance of transition metals are highly phase-dependent. Ru-based nanomaterials are superior catalysts toward hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), but studies are… Click to show full abstract

The physicochemical properties and catalytic performance of transition metals are highly phase-dependent. Ru-based nanomaterials are superior catalysts toward hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), but studies are mostly limited to conventional hexagonal-close-packed (hcp) Ru, mainly arising from the difficulty in synthesizing Ru with pure face-centered-cubic (fcc) phase. Herein, we report a crystal-phase-dependent catalytic study of MoOx-modified Ru (MoOx-Ru fcc and MoOx-Ru hcp) for bifunctional HER and HOR. MoOx-Ru fcc is proven to outperform MoOx-Ru hcp in catalyzing both HER and HOR with much higher catalytic activity and more durable stability. The modification effect of MoOx gives rise to optimal adsorption of H and OH especially on fcc Ru, which thus has resulted in the superior catalytic performance. This work highlights the significance of phase engineering in constructing superior electrocatalysts and may stimulate more efforts on phase engineering of other metal-based materials for diversified applications.

Keywords: phase engineering; hydrogen; phase; performance; moox

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.