LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Statistical Assessment of High-Performance Scaled Double-Gate Transistors from Monolayer WS2.

Photo by joelfilip from unsplash

Scaling of monolayer transition metal dichalcogenide (TMD) field-effect transistors (FETs) is an important step toward evaluating the application space of TMD materials. Although some work on ultrashort channel monolayer (ML)… Click to show full abstract

Scaling of monolayer transition metal dichalcogenide (TMD) field-effect transistors (FETs) is an important step toward evaluating the application space of TMD materials. Although some work on ultrashort channel monolayer (ML) TMD FETs has been published, there exist no comprehensive studies that assess their performance in a statistically relevant manner, providing critical insights into the impact of the device geometry. Part of the reason for the absence of such a study is the substantial variability of TMD devices when processes are not carefully controlled. In this work, we show a statistical study of ultrashort channel double-gated ML WS2 FETs exhibiting excellent device performance and limited device-to-device variations. From a detailed analysis of cross-sectional scanning transmission electron microscopy (STEM) images and careful technology computer aided design (TCAD) simulations, we evaluated, in particular, an unexpected deterioration of the subthreshold characteristics for our shortest devices. Two potential candidates for the observed behavior were identified, i.e., buckling of the TMD on the substrate and loss of gate control due to the source geometry and the high-k dielectric between the metal gate and the metal source electrode.

Keywords: assessment high; geometry; gate; device; statistical assessment; performance

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.