LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unusual Spin Polarization in the Chirality-Induced Spin Selectivity

Photo by tabithabrooke from unsplash

Chirality-induced spin selectivity (CISS) refers to the fact that electrons get spin polarized after passing through chiral molecules in a nanoscale transport device or in photoemission experiments. In CISS, chiral… Click to show full abstract

Chirality-induced spin selectivity (CISS) refers to the fact that electrons get spin polarized after passing through chiral molecules in a nanoscale transport device or in photoemission experiments. In CISS, chiral molecules are commonly believed to be a spin filter through which one favored spin transmits and the opposite spin gets reflected; that is, transmitted and reflected electrons exhibit opposite spin polarization. In this work, we point out that such a spin filter scenario contradicts the principle that equilibrium spin current must vanish. Instead, we find that both transmitted and reflected electrons present the same type of spin polarization, which is actually ubiquitous for a two-terminal device. More accurately, chiral molecules play the role of a spin polarizer rather than a spin filter. The direction of spin polarization is determined by the molecule chirality and the electron incident direction. And the magnitude of spin polarization relies on local spin–orbit coupling in the device. Our work brings a deeper understanding on CISS and interprets recent experiments, for example, the CISS-driven anomalous Hall effect.

Keywords: spin polarization; spin; induced spin; chirality induced

Journal Title: ACS Nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.