LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neutrophil Nanovesicle Protects against Experimental Autoimmune Encephalomyelitis through Enhancing Myelin Clearance by Microglia.

Photo by jrkorpa from unsplash

Timely clearance of myelin debris is the premise of neuroinflammation termination and tissue regeneration in multiple sclerosis (MS). Microglia are the main scavengers of myelin debris in MS lesions, but… Click to show full abstract

Timely clearance of myelin debris is the premise of neuroinflammation termination and tissue regeneration in multiple sclerosis (MS). Microglia are the main scavengers of myelin debris in MS lesions, but its phagocytic capability is limited in MS patients. Here, we develop neutrophil-derived nanovesicles (NNVs) to enhance the efficiency of myelin debris clearance in microglia for MS therapy. RNA sequencing (RNAseq) results demonstrate that NNVs treatment ameliorates lesional neuroinflammation of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Consequently, EAE mice exhibit favorable neurological functions and white matter integrity after NNVs treatment. Specifically, NNVs treatment upregulates the expression of nuclear factor E2-related factor 2 (NRF2) in microglia, as revealed by Assay for Transposase Accessible Chromatin using sequencing (ATACseq). We also demonstrate that NRF2 can activate the transcription of RUBCN (RUN domain and cysteine-rich domain containing Beclin 1-interacting protein), which in turn enhances LC3-associated phagocytosis (LAP) in microglia. As a result, myelin debris engulfed by microglia can be efficiently catabolized in NNVs-treated EAE mice without obvious side effects. Together, this study proves that NNVs can modulate neuroinflammation by clearing myelin debris and is a promising MS treatment strategy.

Keywords: experimental autoimmune; autoimmune encephalomyelitis; myelin debris; clearance microglia; microglia

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.