LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanocarrier-Assisted Delivery of Metformin Boosts Remodeling of Diabetic Periodontal Tissue via Cellular Exocytosis-Mediated Regulation of Endoplasmic Reticulum Homeostasis.

Photo from wikipedia

Endoplasmic reticulum (ER) dysfunction is a potential contributor to the impaired repair capacity of periodontal tissue in diabetes mellitus (DM) patients. Restoring ER homeostasis is thus critical for successful regenerative… Click to show full abstract

Endoplasmic reticulum (ER) dysfunction is a potential contributor to the impaired repair capacity of periodontal tissue in diabetes mellitus (DM) patients. Restoring ER homeostasis is thus critical for successful regenerative therapy of diabetic periodontal tissue. Recent studies have shown that metformin can modulate DM-induced ER dysfunction, yet its mechanism remains unclear. Herein, we show that high glucose elevates the intracellular miR-129-3p level due to exocytosis-mediated release failure and subsequently perturbs ER calcium homeostasis via downregulating transmembrane and coiled-coil domain 1 (TMCO1), an ER Ca2+ leak channel, in periodontal ligament stem cells (PDLSCs). This results in the degradation of RUNX2 via the ubiquitination-dependent pathway, in turn leading to impaired PDLSCs osteogenesis. Interestingly, metformin could upregulate P2X7R-mediated exosome release and decrease intracellular miR-129-3p accumulation, which restores ER homeostasis and thereby rescues the impaired PDLSCs. To further demonstrate the in vivo effect of metformin, a nanocarrier for sustained local delivery of metformin (Met@HALL) in periodontal tissue is developed. Our results demonstrate that compared to controls, Met@HALL with enhanced cytocompatibility and pro-osteogenic activity could boost the remodeling of diabetic periodontal tissue in rats. Collectively, our findings unravel a mechanism of metformin in restoring cellular ER homeostasis, enabling the development of a nanocarrier-mediated ER targeting strategy for remodeling diabetic periodontal tissue.

Keywords: diabetic periodontal; remodeling diabetic; periodontal tissue; metformin; homeostasis; tissue

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.