LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Significant Suppression of Cracks in Freestanding Perovskite Oxide Flexible Sheets Using a Capping Oxide Layer.

Photo from wikipedia

Flexible and functional perovskite oxide sheets with high orientation and crystallization are the next step in the development of next-generation devices. One promising synthesis method is the lift-off and transfer… Click to show full abstract

Flexible and functional perovskite oxide sheets with high orientation and crystallization are the next step in the development of next-generation devices. One promising synthesis method is the lift-off and transfer method using a water-soluble sacrificial layer. However, the suppression of cracks during lift-off is a crucial problem that remains unsolved. In this study, we demonstrated that this problem can be solved by depositing amorphous Al2O3 capping layers on oxide sheets. Using this simple method, over 20 mm2 of crack-free, deep-ultraviolet transparent electrode La:SrSnO3 and ferroelectric Ba0.75Sr0.25TiO3 flexible sheets were obtained. By contrast, the sheets without any capping layers broke. The obtained sheets showed considerable flexibility and high functionality. The La:SrSnO3 sheet simultaneously exhibited a wide bandgap (4.4 eV) and high electrical conductivity (>103 S/cm). The Ba0.75Sr0.25TiO3 sheet exhibited clear room-temperature ferroelectricity with a remnant polarization of 17 μC/cm2. Our findings provide a simple transfer method for obtaining large, crack-free, high-quality, single-crystalline sheets.

Keywords: sheets using; flexible sheets; perovskite oxide; layer; suppression cracks; method

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.