LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Meniscus-Climbing System Inspired 3D Printed Fully Soft Robotics with Highly Flexible Three-Dimensional Locomotion at the Liquid-Air Interface.

Photo from wikipedia

Soft robotics locomotion at the liquid-air interface has become more and more important for an intelligent society. However, existing locomotion of soft robotics is limited to two dimensions. It remains… Click to show full abstract

Soft robotics locomotion at the liquid-air interface has become more and more important for an intelligent society. However, existing locomotion of soft robotics is limited to two dimensions. It remains a formidable challenge to realize three-dimensional locomotion (X, Y, and Z axes) at the liquid-air two-phase interface due to the unbalanced mechanical environment. Inspired by meniscus-climbing beetle larva Pyrrhalta, the mechanism of a three-phase (liquid-solid-air) contact line is here proposed to address the aforementioned challenge. A corresponding 3D printed fully soft robotics (named larvobot) based on photoresponsive liquid crystal elastomer/carbon nanotubes composites endowed repeatable programmable deformation and high degree-of-freedom locomotion. Three-dimensional locomotion at the liquid-air interface including twisting and rolling-up has been developed. The equation of motion is established by analyzing the mechanics along the solid-water surface of the larvobot. Meanwhile, ANSYS is used to calculate the stress distribution, which coincides with the speculation. Moreover, soft robotics is remotely driven by light in a precise spatiotemporal control, which provides a great advantage for applications. As an example, we demonstrate the controllable locomotion of the soft robotics inside closed tubes, which could be used for drug delivery and intelligent transportation.

Keywords: locomotion; robotics; soft robotics; liquid air; interface

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.