LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carrier Recirculation Induced High-Gain Photodetector Based on van der Waals Heterojunction.

Photo by martindorsch from unsplash

Two-dimensional (2D) materials have attracted great attention in the field of photodetection due to their excellent electronic and optoelectronic properties. However, the weak optical absorption caused by atomically thin layers… Click to show full abstract

Two-dimensional (2D) materials have attracted great attention in the field of photodetection due to their excellent electronic and optoelectronic properties. However, the weak optical absorption caused by atomically thin layers and the short lifetime of photocarriers limit their optoelectronic performance, especially for weak light detection. In this work, we design a high-gain photodetector induced by carrier recirculation based on a vertical InSe/GaSe heterojunction. In this architecture, the photogenerated holes are trapped in GaSe due to the built-in electric field, suppressing the recombination rate of photocarriers, so the electrons can recirculate for multiple times in the InSe channel following the generation of a single electron-hole pair, resulting a high photoconductive gain (107). The responsivity and detectivity of the InSe/GaSe heterojunction can reach 1037 A/W and 8.6 × 1013 Jones, which are 1 order of magnitude higher than those of individual InSe. More importantly, the InSe/GaSe heterojunction can respond to weaker light (1 μW/cm2) compared to individual InSe (10 μW/cm2). Utilizing GaSe as the channel and InSe as the electrons trapped layer, the same experimental phenomenon is achieved. This work can provide an approach for designing a highly sensitive device utilizing a 2D van der Waals heterojunction, and it also possesses wide applicability for other materials.

Keywords: high gain; heterojunction; inse; gain; gain photodetector; gase

Journal Title: ACS nano
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.