It is an ongoing endeavor in chemistry and materials science to regulate coacervate droplets on a physiologically relevant spatiotemporal scale to ultimately match or even surpass living cells' precision, complexity,… Click to show full abstract
It is an ongoing endeavor in chemistry and materials science to regulate coacervate droplets on a physiologically relevant spatiotemporal scale to ultimately match or even surpass living cells' precision, complexity, and functionality. Herein, we develop a magnetic strategy orthogonal to the thermal, pH, light, or chemical counterparts that are commonly employed by biotic or artificial systems; its successful implementation thus adds a missing piece to the current arsenal of manipulative methodologies. Specifically, we paramagnetize the otherwise diamagnetic coacervate droplets by cooperatively combining paramagnetic ingredients (including organic radicals, metal ions, and Fe3O4 nanoparticles) and coacervate ingredients to obtain "MagCoa" droplets. A simple model is derived theoretically to account for migration and division of MagCoa droplets in an uneven magnetic field. Experimentally, we produce an array of compartmentalized and monodispersed droplets using microfluidics and magnetically steer them with uniformity and synchronicity. We design and fabricate spatial magnetic modulators to engineer the landscape of a magnetic field that, in turn, directs the MagCoa droplets into predesigned patterns in a reconfigurable fashion. These programmable liquid patterns can be potentially extended to dynamic assembly and information encryption. We envision that the toolbox established here is of generality and multitudes to serve as a practical guide to control droplets magnetically.
               
Click one of the above tabs to view related content.