LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlled Growing of Graphdiyne Film for Friction Reduction and Antiwear.

Photo from wikipedia

Like the multilayered graphene which is the most widely used solid lubricant, graphdiyne (GDY) as a 2D material holds potential similar prospects but has been rarely researched so far. One… Click to show full abstract

Like the multilayered graphene which is the most widely used solid lubricant, graphdiyne (GDY) as a 2D material holds potential similar prospects but has been rarely researched so far. One reason is that growing a GDY film in a controllable manner on diverse material surfaces remains a great challenge. To address the issue, a catalytic pregrowth and solution polymerization method is developed to synthesize a GDY film on various substrates. It allows fine control over film structure and thickness. A macroscopic ultralow friction coefficient of 0.08 is obtained, and a relatively long life of more than 5 h under a high load of 1378 MPa is achieved. Molecular dynamics simulations together with the surface analysis demonstrate that the increased deformation degree and weakened relative motion between GDY layers contribute to the low friction. Especially, different from graphene, the friction of GDY exhibits a double increase and decrease in one period of λ ≈ 8-9 Å, and it is roughly equal to the distance between two adjacent alkyne bonds in the x direction, indicating GDY's structure and lattice play an important role in reducing friction.

Keywords: controlled growing; growing graphdiyne; gdy; friction; film

Journal Title: ACS nano
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.