LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Understanding the Highly Reversible Potassium Storage of Hollow Ternary (Bi-Sb)2S3@N-C Nanocube.

Photo by cosmicomicfox from unsplash

Metal sulfide anodes have aroused much attention in potassium ion batteries (PIBs) owing to their high theoretical capacities, but the sluggish kinetics and inferior cycling performance caused by severe volumetric… Click to show full abstract

Metal sulfide anodes have aroused much attention in potassium ion batteries (PIBs) owing to their high theoretical capacities, but the sluggish kinetics and inferior cycling performance caused by severe volumetric change and particle pulverization greatly hinder their further development. Herein, robust hollow structure design together with phase structure engineering endow (Bi-Sb)2S3@N-C anode with superior (de)potassiation kinetics and excellent electrochemical performances in PIBs. Specifically, in situ X-ray diffraction combined with density functional theory calculations and ex situ X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy (TEM) analyses indicated a fresh reaction mechanism of (Bi-Sb)2S3 anode with a distinctive multistep (de)potassiation route along (003) plane of (Bi,Sb) alloy thanks to the Bi-Sb phase regulation in (Bi-Sb)2S3 anode, ensuring it with superior reaction kinetics. Moreover, in situ TEM characterization revealed the advantages of the hollow nanostructure with carbon shell, facilitating fast ion transport kinetics and high tolerance of volume change as well as enabling the structural integrity of electrode material during (de)potassiation. As a result, the (Bi-Sb)2S3 hollow nanocube with N-doped carbon shell ((Bi-Sb)2S3@N-C) delivers a high initial Coulombic efficiency of 66.3%, a great rate performance of 289 mAh g-1 at 2.0 A g-1, and an ultralong cycling life (89% retention after 220 cycles at 0.1 A g-1 and 85% retention after 1600 cycles at 2.0 A g-1) in PIBs. Furthermore, the full cell of (Bi-Sb)2S3@N-C//PTCDA affords a high reversible capacity of 281 mA h g-1 at 1.0 A g-1 after 300 cycles. This work combines structural design and in situ techniques, proving a successful nanostructure engineering strategy to rationalize alloy-type electrode materials for PIBs.

Keywords: 2s3 anode; potassium; highly reversible; potassium storage; reversible potassium; understanding highly

Journal Title: ACS nano
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.