LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Radiation-Triggered Selenium-Engineered Mesoporous Silica Nanocapsules for RNAi Therapy in Radiotherapy-Resistant Glioblastoma.

Photo by karim_manjra from unsplash

Radiotherapy-resistant glioblastoma (rrGBM) remains a significant clinical challenge because of high infiltrative growth characterized by activation of antiapoptotic signal transduction. Herein, we describe an efficiently biodegradable selenium-engineered mesoporous silica nanocapsule,… Click to show full abstract

Radiotherapy-resistant glioblastoma (rrGBM) remains a significant clinical challenge because of high infiltrative growth characterized by activation of antiapoptotic signal transduction. Herein, we describe an efficiently biodegradable selenium-engineered mesoporous silica nanocapsule, initiated by high-energy X-ray irradiation and employed for at-site RNA interference (RNAi) to inhibit rrGBM invasion and achieve maximum therapeutic benefit. Our radiation-triggered RNAi nanocapsule showed high physiological stability, good blood-brain barrier transcytosis, and potent rrGBM accumulation. An intratumoral RNAi nanocapsule permitted low-dose X-ray radiation-triggered dissociation for cofilin-1 knockdown, inhibiting rrGBM infiltration. More importantly, tumor suppression was further amplified by electron-affinity aminoimidazole products converted from metronidazole polymers under X-ray radiation-exacerbated hypoxia, which sensitized cell apoptosis to ionizing radiation by fixing reactive oxygen species-induced DNA lesions. In vivo experiments confirmed that our RNAi nanocapsule reduced tumor growth and invasion, prolonging survival in an orthotopic rrGBM model. Generally, we present a promising radiosensitizer that would effectively improve rrGBM-patient outcomes with low-dose X-ray irradiation.

Keywords: resistant glioblastoma; selenium engineered; radiotherapy resistant; radiation; engineered mesoporous; radiation triggered

Journal Title: ACS nano
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.