LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enriching Reaction Intermediates in Multishell Structured Copper Catalysts for Boosted Propanol Electrosynthesis from Carbon Monoxide.

Photo by ryanhoffman007 from unsplash

Fine-tuned catalysts that alter the diffusion kinetics of reaction intermediates is of great importance for achieving high-performance multicarbon (C2+) product generation in carbon monoxide (CO) reduction. Herein, we conduct a… Click to show full abstract

Fine-tuned catalysts that alter the diffusion kinetics of reaction intermediates is of great importance for achieving high-performance multicarbon (C2+) product generation in carbon monoxide (CO) reduction. Herein, we conduct a structural design based on Cu2O nanoparticles and present an effective strategy for enhancing propanol electrosynthesis from CO. The electrochemical characterization, operando Raman monitoring, and finite-element method simulations reveal that the multishell structured catalyst can realize the enrichment of C1 and C2 intermediates by nanoconfinement space, leading to the possibility of further coupling. Consequently, the multishell copper catalyst realizes a high Faraday efficiency of 22.22 ± 0.38% toward propanol at the current density of 50 mA cm-2.

Keywords: multishell structured; propanol electrosynthesis; reaction intermediates; carbon monoxide

Journal Title: ACS nano
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.