LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Liquid-Metal-Printed Ultrathin Oxides for Atomically Smooth 2D Material Heterostructures.

Photo from wikipedia

Two-dimensional (2D) semiconductors are promising channel materials for continued downscaling of complementary metal-oxide-semiconductor (CMOS) logic circuits. However, their full potential continues to be limited by a lack of scalable high-k… Click to show full abstract

Two-dimensional (2D) semiconductors are promising channel materials for continued downscaling of complementary metal-oxide-semiconductor (CMOS) logic circuits. However, their full potential continues to be limited by a lack of scalable high-k dielectrics that can achieve atomically smooth interfaces, small equivalent oxide thicknesses (EOTs), excellent gate control, and low leakage currents. Here, large-area liquid-metal-printed ultrathin Ga2O3 dielectrics for 2D electronics and optoelectronics are reported. The atomically smooth Ga2O3/WS2 interfaces enabled by the conformal nature of liquid metal printing are directly visualized. Atomic layer deposition compatibility with high-k Ga2O3/HfO2 top-gate dielectric stacks on a chemical-vapor-deposition-grown monolayer WS2 is demonstrated, achieving EOTs of ∼1 nm and subthreshold swings down to 84.9 mV/dec. Gate leakage currents are well within requirements for ultrascaled low-power logic circuits. These results show that liquid-metal-printed oxides can bridge a crucial gap in dielectric integration of 2D materials for next-generation nanoelectronics.

Keywords: liquid metal; atomically smooth; metal printed; printed ultrathin; ultrathin oxides; metal

Journal Title: ACS nano
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.