LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanochannel-Induced Efficient Water Splitting at the Superhydrophobic Interface.

Photo from wikipedia

Constructing a favorable reaction configuration at the water/catalyst interface is crucial for high-efficiency semiconductor-based water splitting. For a long time, a hydrophilic surface of semiconductor catalysts has been considered necessary… Click to show full abstract

Constructing a favorable reaction configuration at the water/catalyst interface is crucial for high-efficiency semiconductor-based water splitting. For a long time, a hydrophilic surface of semiconductor catalysts has been considered necessary for efficient mass transfer and adequate contact with water. In this work, by constructing a superhydrophobic PDMS-Ti3+/TiO2 interface (denoted P-TTO) with nanochannels arranged by nonpolar silane chains, we observe overall water splitting efficiencies improved by an order of magnitude under both the white light and simulated AM1.5G solar irradiation compared to the hydrophilic Ti3+/TiO2 interface. The electrochemical overall water splitting potential on the P-TTO electrode also decreased from 1.62 to 1.27 V, which is close to the thermodynamic limit of 1.23 V. Through the in situ diffuse reflection infrared Fourier transform spectroscopy, a nanochannel-induced water configuration transition is directly detected. The density functional theory calculation further verifies the lower reaction energy of water decomposition at the water/PDMS-TiO2 interface. Our work achieves efficient overall water splitting through nanochannel-induced water configurations without changing the bulk of semiconductor catalyst, which reveals the significant role of water status at the interface in the efficiency of the water splitting reaction over the properties of catalyst materials.

Keywords: water; nanochannel induced; water splitting; overall water; tio2 interface

Journal Title: ACS nano
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.