Photocatalytic CO2 conversion to fuels is a promising strategy for achieving global carbon neutrality. However, infrared light, which accounts for ∼50% of the full sunlight spectrum, has not yet been… Click to show full abstract
Photocatalytic CO2 conversion to fuels is a promising strategy for achieving global carbon neutrality. However, infrared light, which accounts for ∼50% of the full sunlight spectrum, has not yet been effectively utilized via photocatalysis. Here, we present an approach to directly power photocatalytic CO2 reduction using near-infrared light. This near-infrared light-responsive process occurs on an in situ generated Co3O4/Cu2O photocatalyst with a nanobranch structure. Photoassisted Kelvin probe force microscopy and relative photocatalytic measurements demonstrate the increase of surface photovoltage after illumination by near-infrared light. We also find that Cu(I) on this in situ generated Co3O4/Cu2O could facilitate the formation of a *CHO intermediate, thus enabling a high-performance CH4 production with a yield of 6.5 μmol/h and a selectivity of 99%. Moreover, we perform a practically oriented direct solar-driven photocatalytic CO2 reduction under concentrated sunlight and achieve a fuel yield of 12.5 μmol/h.
               
Click one of the above tabs to view related content.