LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photoinduced Electron Transfer Process Visualized on Single Silver Nanoparticles.

Photo from wikipedia

Understanding the photoinduced electron transfer (PET) mechanism is vital to improving the photoelectric conversion efficiency for solar energy materials and photosensitization systems. Herein, we visually demonstrate the PET process by… Click to show full abstract

Understanding the photoinduced electron transfer (PET) mechanism is vital to improving the photoelectric conversion efficiency for solar energy materials and photosensitization systems. Herein, we visually demonstrate the PET process by real-time monitoring the photoinduced chemical transformation of p-aminothiophenol (p-ATP), an important SERS signal molecule, to 4,4'-dimercaptoazobenzene on single silver nanoparticles (AgNPs) with a localized surface plasmon resonance (LSPR) spectroscopy coupled dark-field microscopy. The bidirectional LSPR scattering spectral shifts bathochromically at first and hypsochromically then, which are caused by the electron transfer delay of p-ATP, disclose the PET path from p-ATP to O2 through AgNPs during the reaction, and enable us to digitalize the corresponding electron loss and gain on the surface of AgNP at different time periods. This visualized PET process could provide a simple and efficient approach to explore the nature of PET and help to interpret the SERS mechanism in terms of p-ATP.

Keywords: photoinduced electron; silver nanoparticles; single silver; electron transfer; process; transfer

Journal Title: ACS nano
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.