LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exosome-Mediated Ultra-Effective Direct Conversion of Human Fibroblasts into Neural Progenitor-like Cells.

Photo by drew_hays from unsplash

Exosomes, naturally secreted nanoparticles, have been introduced as vehicles for horizontal transfer of genetic material. We induced autologous exosomes containing a cocktail of reprogramming factors ("reprosomes") to convert fibroblasts into… Click to show full abstract

Exosomes, naturally secreted nanoparticles, have been introduced as vehicles for horizontal transfer of genetic material. We induced autologous exosomes containing a cocktail of reprogramming factors ("reprosomes") to convert fibroblasts into neural progenitor cells (NPCs). The fibroblasts were treated with ultrasound and subsequently cultured in neural stem cell medium for 1 day to induce the release of reprosomes composed of reprogramming factors associated with chromatin remodeling and neural lineage-specific factors. After being treated with reprosomes, fibroblasts were converted into NPCs (rNPCs) with great efficiency via activation of chromatin remodeling, so quickly that only 5 days were required for the formation of 1500 spheroids showing an NPC-like phenotype. The rNPCs maintained self-renewal and proliferative properties for several weeks and successfully differentiated into neurons, astrocytes, and oligodendrocytes in vitro and in vivo. Reprosome-mediated cellular reprogramming is simple, safe, and efficient to produce autologous stem cells for clinical application.

Keywords: neural progenitor; mediated ultra; fibroblasts neural; exosome mediated; ultra effective

Journal Title: ACS nano
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.