LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High Interfacial Charge Storage Capability of Carbonaceous Cathodes for Mg Batteries.

Photo from wikipedia

A rechargeable Mg battery where the capacity mainly originates from reversible reactions occurring at the electrode/electrolyte interface efficiently avoids the challenge of sluggish Mg intercalation encountered in conventional Mg batteries.… Click to show full abstract

A rechargeable Mg battery where the capacity mainly originates from reversible reactions occurring at the electrode/electrolyte interface efficiently avoids the challenge of sluggish Mg intercalation encountered in conventional Mg batteries. The interfacial reactions in a cell based on microwave-exfoliated graphite oxide (MEGO) as the cathode and all phenyl complex (APC) as electrolyte are identified by quantitative kinetics analysis as a combination of diffusion-controlled reactions involving ether solvents ( esols) and capacitive processes. During magnesiation, esols in APC electrolytes can significantly affect the electrochemical reactions and charge transfer resistances at the electrode/electrolyte interface and thus govern the charge storage properties of the MEGO cathode. In APC-tetrahydrofuran (THF) electrolyte, MEGO exhibits a reversible capacity of ∼220 mAh g-1 at 10 mA g-1, while a reversible capacity of ∼750 mAh g-1 at 10 mA g-1 was obtained in APC-1,2-dimethoxyethane (DME) electrolyte. The high capacity improvement not only points to the important role of the esols in the APC electrolytes but also presents a Mg battery with high interfacial charge storage capability as a very promising and viable competitor to the conventional intercalation-based batteries.

Keywords: charge storage; high interfacial; charge; interfacial charge; storage capability

Journal Title: ACS nano
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.