Understanding the atomically precise arrangement of atoms at epitaxial interfaces is important for emerging technologies such as quantum materials that have function and performance dictated by bonds and defects that… Click to show full abstract
Understanding the atomically precise arrangement of atoms at epitaxial interfaces is important for emerging technologies such as quantum materials that have function and performance dictated by bonds and defects that are energetically active on the micro-electronvolt scale. A combination of atomistic modeling and dislocation theory analysis describes both primary and secondary dislocation networks at the metamorphic Al/Si (111) interface, which is experimentally validated by atomic resolution scanning transmission electron microscopy. The electron microscopy images show primary misfit dislocations for the majority of the strain relief and evidence of a secondary structure allowing for complete relaxation of the Al-Si misfit strain. This study demonstrates the equilibrium interface that represents the lowest energy structure of a highly mismatched and semicoherent single-crystal interface with complete strain relief in an atomically abrupt structure.
               
Click one of the above tabs to view related content.