LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Double-Layer Morphologies from a Silicon-Containing ABA Triblock Copolymer.

Photo from wikipedia

A combined experimental and self-consistent-field theoretical (SCFT) investigation of the phase behavior of poly(stryrene- b-dimethylsiloxane- b-styrene) (PS- b-PDMS- b-PS, or SDS32) thin films during solvent vapor annealing is presented. The… Click to show full abstract

A combined experimental and self-consistent-field theoretical (SCFT) investigation of the phase behavior of poly(stryrene- b-dimethylsiloxane- b-styrene) (PS- b-PDMS- b-PS, or SDS32) thin films during solvent vapor annealing is presented. The morphology of the triblock copolymer is described as a function of the as-cast film thickness and the ratio of two different solvent vapors, toluene and heptane. SDS32 formed terraced bilayer morphologies even when the film thickness was much lower than the commensurate thickness. The morphology transitioned between bilayer cylinders, bilayer perforated lamellae, and bilayer lamellae, including mixed structures such as a perforated lamella on top of a layer of in-plane cylinders, as the heptane fraction during solvent annealing increased. SCFT modeling showed the same morphological trends as a function of the block volume fraction. In comparison with diblock PS- b-PDMS with the same molecular weight, the SDS32 offers a simple route to produce a diversity of well-ordered bilayer structures with smaller feature sizes, including the formation of bilayer perforated lamellae over a large process window.

Keywords: double layer; triblock copolymer; bilayer

Journal Title: ACS nano
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.