For low-cost and facile fabrication of innovative nanoscale devices with outstanding functionality and performance, it is critical to develop more practical patterning solutions that are applicable to a wide range… Click to show full abstract
For low-cost and facile fabrication of innovative nanoscale devices with outstanding functionality and performance, it is critical to develop more practical patterning solutions that are applicable to a wide range of materials and feature sizes while minimizing detrimental effects by processing conditions. In this study, we report that area-selective sub-10 nm pattern formation can be realized by temperature-controlled spin-casting of block copolymers (BCPs) combined with submicron-scale-patterned chemical surfaces. Compared to conventional room-temperature spin-casting, the low temperature ( e.g., -5 °C) casting of the BCP solution on the patterned self-assembled monolayer achieved substantially improved area selectivity and uniformity, which can be explained by optimized solvent evaporation kinetics during the last stage of film formation. Moreover, the application of cold spin-casting can also provide high-yield in situ patterning of light-emitting CdSe/ZnS quantum dot thin films, indicating that this temperature-optimized spin-casting strategy would be highly effective for tailored patterning of diverse organic and hybrid materials in solution phase.
               
Click one of the above tabs to view related content.