LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cellular Response of Escherichia coli to Photocatalysis: Flagellar Assembly Variation and Beyond.

Photo by matteo_skyrider from unsplash

Bacterial cells can be inactivated by external reactive oxygen species (ROS) produced by semiconductor photocatalysis. However, little is known about cellular responses to photocatalysis. For a better understanding of this… Click to show full abstract

Bacterial cells can be inactivated by external reactive oxygen species (ROS) produced by semiconductor photocatalysis. However, little is known about cellular responses to photocatalysis. For a better understanding of this issue, one strain of Escherichia coli ( E. coli, hereafter named as MT), which has an increased ability to metabolize carbon sources, was screened out from the wild-type (WT) E. coli K12 by repeated exposure to photocatalysis with palladium oxide modified nitrogen-doped titanium dioxide. In this study, transcriptome sequencing of the WT and MT strains that were exposed or unexposed to photocatalysis were carried out. Cellular responses to photocatalysis were inferred from the functions of genes whose transcripts were either increased or decreased. Upregulation of expression of bacterial flagellar assembly genes used for chemotaxis was detected in cells exposed to semilethal photocatalytic conditions of the WT E. coli. Increased capability to degrade superoxide radicals and decreased bacterial flagellar assembly and chemotaxis were observed in MT E. coli compared to WT cells. We conclude that the differences in motility and intracellular ROS between MT and WT are directly related to survivability of E. coli during exposure to photodisinfection.

Keywords: escherichia coli; flagellar assembly; photocatalysis

Journal Title: ACS nano
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.