LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum Calligraphy: Writing Single-Photon Emitters in a Two-Dimensional Materials Platform.

Photo from wikipedia

We present a paradigm for encoding strain into two-dimensional materials (2DMs) to create and deterministically place single-photon emitters (SPEs) in arbitrary locations with nanometer-scale precision. Our material platform consists of… Click to show full abstract

We present a paradigm for encoding strain into two-dimensional materials (2DMs) to create and deterministically place single-photon emitters (SPEs) in arbitrary locations with nanometer-scale precision. Our material platform consists of a 2DM placed on top of a deformable polymer film. Upon application of sufficient mechanical stress using an atomic force microscope tip, the 2DM/polymer composite deforms, resulting in formation of highly localized strain fields with excellent control and repeatability. We show that SPEs are created and localized at these nanoindents and exhibit single-photon emission up to 60 K, the highest temperature reported in these materials. This quantum calligraphy allows deterministic placement and real time design of arbitrary patterns of SPEs for facile coupling with photonic waveguides, cavities, and plasmonic structures. In addition to enabling versatile placement of SPEs, these results present a general methodology for imparting strain into 2DM with nanometer-scale precision, providing an invaluable tool for further investigations and future applications of strain engineering of 2DM and 2DM devices.

Keywords: photon; dimensional materials; two dimensional; quantum calligraphy; photon emitters; single photon

Journal Title: ACS nano
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.