LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Large-Scale and Low-Cost Fabrication of Silicon Mie Resonators.

Photo from wikipedia

High index dielectric nanoparticles have been proposed for many different applications. However, widespread utilization in practice also requires large-scale production methods for crystalline silicon nanoparticles, with engineered optical properties in… Click to show full abstract

High index dielectric nanoparticles have been proposed for many different applications. However, widespread utilization in practice also requires large-scale production methods for crystalline silicon nanoparticles, with engineered optical properties in a low-cost manner. Here, we demonstrate a facile, low-cost, and large-scale fabrication method of crystalline silicon colloidal Mie resonators in water, using a blender. The obtained nanoparticles are polydisperse with an almost spherical shape and the diameters controlled in the range 100-200 nm by a centrifugation process. Then the size distribution of silicon nanoparticles enables broad extinction from UV to near-infrared, confirmed by Mie theory when considering the size distribution in the calculations. Thanks to photolithographic and drop-cast deposition techniques to locate the position on a substrate of the colloidal nanoparticles, we experimentally demonstrate that the individual silicon nanoresonators show strong electric and magnetic Mie resonances in the visible range.

Keywords: large scale; low cost; mie resonators; silicon

Journal Title: ACS nano
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.