Chemical conversion by atomic substitution offers a powerful route toward the creation of unusual structures and functionalities. Here, we demonstrate the progressive transformation of single-layer TiTe2 into TiSe2 by reaction… Click to show full abstract
Chemical conversion by atomic substitution offers a powerful route toward the creation of unusual structures and functionalities. Here, we demonstrate the progressive transformation of single-layer TiTe2 into TiSe2 by reaction with a Se flux in vacuum. Angle-resolved photoemission spectroscopy and scanning tunneling microscopy reveal intriguing reaction patterns involving TiSe2 island ingrowth starting from the TiTe2 island edges, while the band structure and core level signatures of TiSe2 grow in intensity at the expense of those corresponding to TiTe2. Lattice mismatch between TiTe2 and TiSe2 results in misfit holes and lattice distortions over a distance behind a seamless fingerlike reaction front. The regions of TiSe2 and TiTe2 are distinguished by a height difference and a charge density wave (CDW) at different transition temperatures. The method of in situ chemical conversion offers opportunities for atomic-scale engineering of layered transition metal dichalcogenides that host useful properties arising from CDW, Dirac, Weyl, superconducting, spin-valley, and magnetic structures.
               
Click one of the above tabs to view related content.