LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atomic-Scale Chemical Conversion of Single-Layer Transition Metal Dichalcogenides.

Photo from wikipedia

Chemical conversion by atomic substitution offers a powerful route toward the creation of unusual structures and functionalities. Here, we demonstrate the progressive transformation of single-layer TiTe2 into TiSe2 by reaction… Click to show full abstract

Chemical conversion by atomic substitution offers a powerful route toward the creation of unusual structures and functionalities. Here, we demonstrate the progressive transformation of single-layer TiTe2 into TiSe2 by reaction with a Se flux in vacuum. Angle-resolved photoemission spectroscopy and scanning tunneling microscopy reveal intriguing reaction patterns involving TiSe2 island ingrowth starting from the TiTe2 island edges, while the band structure and core level signatures of TiSe2 grow in intensity at the expense of those corresponding to TiTe2. Lattice mismatch between TiTe2 and TiSe2 results in misfit holes and lattice distortions over a distance behind a seamless fingerlike reaction front. The regions of TiSe2 and TiTe2 are distinguished by a height difference and a charge density wave (CDW) at different transition temperatures. The method of in situ chemical conversion offers opportunities for atomic-scale engineering of layered transition metal dichalcogenides that host useful properties arising from CDW, Dirac, Weyl, superconducting, spin-valley, and magnetic structures.

Keywords: single layer; transition metal; chemical conversion; conversion; atomic scale

Journal Title: ACS nano
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.